Publications by authors named "E J Berjano"

Introduction: Proactive esophageal cooling reduces injury during radiofrequency (RF) ablation of the left atrium (LA) for the treatment of atrial fibrillation (AF). New catheters are capable of higher wattage settings up to 90 W (very high-power short duration, vHPSD) for 4 s. Varying power and duration, however, does not eliminate the risk of thermal injury.

View Article and Find Full Text PDF

Background: This study evaluated electrical conductivity in human liver tissue in the 3-1000 kHz frequency range to compare normal versus tumor tissues under in vivo versus ex vivo conditions.

Methods: Previous informed consent was obtained from twenty patients undergoing liver resection in whom liver electrical conductivity was measured during surgery and after resection.

Result: We found higher electrical conductivity values in tumor tissues than in normal tissue in both in vivo (0.

View Article and Find Full Text PDF

Proactive esophageal cooling for the purpose of reducing the likelihood of ablation-related esophageal injury resulting from radiofrequency (RF) cardiac ablation procedures is increasingly being used and has been Food and Drug Administration cleared as a protective strategy during left atrial RF ablation for the treatment of atrial fibrillation. In this review, we examine the evidence supporting the use of proactive esophageal cooling and the potential mechanisms of action that reduce the likelihood of atrioesophageal fistula (AEF) formation. Although the pathophysiology behind AEF formation after thermal injury from RF ablation is not well studied, a robust literature on fistula formation in other conditions (eg, Crohn disease, cancer, and trauma) exists and the relationship to AEF formation is investigated in this review.

View Article and Find Full Text PDF

An epicardial approach is often used in radiofrequency (RF) catheter ablation to ablate ventricular tachycardia when an endocardial approach fails. Our objective was to analyze the effect of the position of the dispersive patch (DP) on lesion size using computer modeling during epicardial approach. We compared the posterior position (patient's back), commonly used in clinical practice, to the anterior position (patient's chest).

View Article and Find Full Text PDF