Molecular dynamics (MD) simulations and chemical shifts from machine learning are used to predict N, C and H chemical shifts for the amorphous form of the drug irbesartan. The local environments are observed to be highly dynamic well below the glass transition, and averaging over the dynamics is essential to understanding the observed NMR shifts. Predicted linewidths are about 2 ppm narrower than observed experimentally, which is hypothesised to largely result from susceptibility effects.
View Article and Find Full Text PDFThe potential health consequences of glyphosate-induced gut microbiome alterations have become a matter of intense debate. As part of a multifaceted study investigating toxicity, carcinogenicity and multigenerational effects of glyphosate and its commercial herbicide formulations, we assessed changes in bacterial and fungal populations in the caecum microbiota of rats exposed prenatally until adulthood (13 weeks after weaning) to three doses of glyphosate (0.5, 5, 50 mg/kg body weight/day), or to the formulated herbicide products Roundup Bioflow and RangerPro at the same glyphosate-equivalent doses.
View Article and Find Full Text PDFIn absence of external torque, plasma rotation in tokamaks results from a balance between collisional magnetic braking and turbulent drive. The outcome of this competition and cooperation is essential to determine the plasma flow. A reduced model, supported by gyrokinetic simulations, is first used to explain and quantify the competition only.
View Article and Find Full Text PDF