Publications by authors named "E Iuvara Romiti"

Melanoma has a high propensity to metastasize to the brain which portends a poorer prognosis. With advanced radiation techniques and targeted therapies, outcomes however are improving. Melanoma brain metastases are best managed in a multi-disciplinary approach, including medical oncologists, neuro-oncologists, radiation oncologists, and neurosurgeons.

View Article and Find Full Text PDF

Neutral ceramidase (CDase) is a key enzyme of sphingomyelin (SM) metabolism implicated in cell signaling triggered by a variety of extracellular ligands. Previously it was shown that in murine endothelial cells a portion of neutral CDase is localized in detergent-resistant light membranes. In this study subcellular distribution of neutral CDase was further investigated.

View Article and Find Full Text PDF

Sphingomyelinase (SMase) and ceramidase (CDase) activities participate in sphingomyelin (SM) metabolism and have a role in the signal transduction of a variety of ligands. In this study evidence is presented that caveolin-enriched light membranes (CELMs) of murine endothelial cells, characterized by high SM, ceramide (Cer) and cholesterol content, bear acid and neutral SMase as well as neutral CDase activities. Localization of neutral CDase in CELMs was confirmed by Western analysis.

View Article and Find Full Text PDF

Rho GTPases participate in various important signaling pathways and have been implicated in myogenic differentiation. Here the first evidence is provided that in C2C12 myoblasts sphingosine 1-phosphate (SPP) rapidly and transiently induced membrane association of Rho A in a pertussis toxin-insensitive manner. The bioactive lipid preferentially relocalized the GTPase to Golgi-enriched membrane.

View Article and Find Full Text PDF

Ceramidases (CDase(s)) play a key role in sphingolipid metabolism by hydrolyzing ceramide into sphingosine. Here we report that murine endothelial cells, macrophages, and human fibroblasts are all able to release acid as well as neutral/alkaline CDase activities in the culture medium. Endothelial cells were characterized by the highest specific activity of cellular as well as secreted CDases.

View Article and Find Full Text PDF