Comput Methods Programs Biomed
October 2024
Background And Objective: Brain-Machine Interfaces (BMIs) based on a motor imagination paradigm provide an intuitive approach for the exoskeleton control during gait. However, their clinical applicability remains difficulted by accuracy limitations and sensitivity to false activations. A proposed improvement involves integrating the BMI with methods based on detecting Error Related Potentials (ErrP) to self-tune erroneous commands and enhance not only the system accuracy, but also its usability.
View Article and Find Full Text PDFBackground: This research focused on the development of a motor imagery (MI) based brain-machine interface (BMI) using deep learning algorithms to control a lower-limb robotic exoskeleton. The study aimed to overcome the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated feature extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, allowing subjects to perform mental tasks at their own will.
View Article and Find Full Text PDFIntroduction: In recent years, the decoding of motor imagery (MI) from electroencephalography (EEG) signals has become a focus of research for brain-machine interfaces (BMIs) and neurorehabilitation. However, EEG signals present challenges due to their non-stationarity and the substantial presence of noise commonly found in recordings, making it difficult to design highly effective decoding algorithms. These algorithms are vital for controlling devices in neurorehabilitation tasks, as they activate the patient's motor cortex and contribute to their recovery.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
This study evaluates the performance of two convolutional neural networks (CNNs) in a brain-machine interface (BMI) based on motor imagery (MI) by using a small dataset collected from five participants wearing a lower-limb exoskeleton. To address the issue of limited data availability, transfer learning was employed by training models on EEG signals from other subjects and subsequently fine-tuning them to specific users. A combination of common spatial patterns (CSP) and linear discriminant analysis (LDA) was used as a benchmark for comparison.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Brain-machine interfaces (BMIs) based on motor imagery (MI) for controlling lower-limb exoskeletons during the gait have been gaining importance in the rehabilitation field. However, these MI-BMI are not as precise as they should. The detection of error related potentials (ErrP) as a self-tune parameter to prevent wrong commands could be an interesting approach to improve their performance.
View Article and Find Full Text PDF