Objectives: To present a framework to develop and implement a fast-track artificial intelligence (AI) curriculum into an existing radiology residency program, with the potential to prepare a new generation of AI conscious radiologists.
Methods: The AI-curriculum framework comprises five sequential steps: (1) forming a team of AI experts, (2) assessing the residents' knowledge level and needs, (3) defining learning objectives, (4) matching these objectives with effective teaching strategies, and finally (5) implementing and evaluating the pilot. Following these steps, a multidisciplinary team of AI engineers, radiologists, and radiology residents designed a 3-day program, including didactic lectures, hands-on laboratory sessions, and group discussions with experts to enhance AI understanding.
Objectives: We sought to investigate if artificial medical images can blend with original ones and whether they adhere to the variable anatomical constraints provided.
Methods: Artificial images were generated with a generative model trained on publicly available standard and low-dose chest CT images (805 scans; 39,803 2D images), of which 17% contained evidence of pathological formations (lung nodules). The test set (90 scans; 5121 2D images) was used to assess if artificial images (512 × 512 primary and control image sets) blended in with original images, using both quantitative metrics and expert opinion.
Background And Purpose: Researchers and clinical radiology practices are increasingly faced with the task of selecting the most accurate artificial intelligence tools from an ever-expanding range. In this study, we sought to test the utility of ensemble learning for determining the best combination from 70 models trained to identify intracranial hemorrhage. Furthermore, we investigated whether ensemble deployment is preferred to use of the single best model.
View Article and Find Full Text PDF