The combination of plasmonic nanoparticles and semiconductor substrates changes the properties of hybrid structures that can be used for various applications in optoelectronics, photonics, and sensing. Structures formed by colloidal Ag nanoparticles (NPs) with a size of 60 nm and planar GaN nanowires (NWs) have been studied by optical spectroscopy. GaN NWs have been grown using selective-area metalorganic vapor phase epitaxy.
View Article and Find Full Text PDFInteraction of cavity modes with an exciton in a meso-cavity (the structure supporting several cavity modes separated by an energy interval comparable to Rabi-splitting of an exciton and cavity modes) has been analyzed using a quantum-mechanical approach. Simultaneous interaction of an exciton and several cavity modes results in few novel effects such as ladder-like increase of the exciton population in the system, quantum beating and non-monotonic dependence of the ground polariton state in the system on the pumping.
View Article and Find Full Text PDFThe use of metamaterial as a way to mitigate the negative effects of absorption in metals on the Purcell effect in metal-dielectric structures is investigated. A layered metal-dielectric structure is considered as an anisotropic medium in the long-wavelength limit. The dispersion of the surface plasmon appearing at the boundary between such a structure and a different dielectric material, as well as the position of the peak in the local density of states are studied for various combinations of materials and filling factors of the periodic structure.
View Article and Find Full Text PDFThe scheme of a generation of ultrasound waves based on optically excited Tamm plasmon structures is proposed. It is shown that Tamm plasmon structures can provide total absorption of a laser pulse with arbitrary wavelength in a metallic layer providing the possibility of the use of an infrared semiconductor laser for the excitation of ultrasound waves. Laser pulse absorption, heat transfer and dynamical properties of the structure are modeled, and the optimal design of the structure is found.
View Article and Find Full Text PDFControl over spontaneous emission rate is important for improving efficiency in different semiconductor applications including lasers, LEDs and photovoltaics. Usually, an emitter should be placed inside the cavity to increase the spontaneous emission rate, although it is technologically challenging. Here we experimentally demonstrate a phenomenon of super-radiance observed in a cavity-less periodic Bragg structure based on InAs monolayer-thick multiple quantum wells (MQW).
View Article and Find Full Text PDF