Publications by authors named "E I Daĭkhin"

Stable isotopic profiling has long permitted sensitive investigations of the metabolic consequences of genetic mutations and/or pharmacologic therapies in cellular and mammalian models. Here, we describe detailed methods to perform stable isotopic profiling of intermediary metabolism and metabolic flux in the nematode, Caenorhabditis elegans. Methods are described for profiling whole worm free amino acids, labeled carbon dioxide, labeled organic acids, and labeled amino acids in animals exposed to stable isotopes either from early development on nematode growth media agar plates or beginning as young adults while exposed to various pharmacologic treatments in liquid culture.

View Article and Find Full Text PDF

Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival.

View Article and Find Full Text PDF

Caenorhabditis elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear genes that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes.

View Article and Find Full Text PDF

Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used 13C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis.

View Article and Find Full Text PDF

Hemoglobin (Hb) Bassett, an abnormal Hb variant with a markedly reduced oxygen affinity, was discovered in a Caucasian (Anglo-Saxon) male child who experienced episodes of cyanosis. Cation-exchange and reversed-phase (RP) high-performance liquid chromatography (HPLC) showed that the patient has an abnormal Hb, with a mutation in the alpha-globin. Tryptic peptide digest of the abnormal alpha-globin with subsequent HPLC analysis revealed abnormal elution of the alpha-T11 peptide.

View Article and Find Full Text PDF