Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism.
View Article and Find Full Text PDFThe establishment of memory T cell responses is critical to protection against pathogens and is influenced by the conditions under which memory formation occurs. Iron is an essential micronutrient for multiple immunologic processes and nutritional deficiency is a common problem worldwide. Despite its prevalence, the impact of nutritional iron deficiency on the establishment of memory T cell responses is not fully understood.
View Article and Find Full Text PDFMature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage.
View Article and Find Full Text PDF