ACS Appl Mater Interfaces
September 2024
Nanostructured ultraviolet (UV) light sources represent a growing research field in view of their potential applications in wearable optoelectronics or medical treatment devices. In this work, we report the demonstration of the first flexible UV-A light emitting diode (LED) based on AlGaN/GaN core-shell microwires. The device is based on a composite microwire/poly(dimethylsiloxane) (PDMS) membrane with flexible transparent electrodes.
View Article and Find Full Text PDFThis article presents low-loss mid-infrared waveguides fabricated on a Ge-rich SiGe strain-relaxed buffer grown on an industrial-scale 200 mm wafer, with propagation losses below 0.5 dB/cm for 5-7 µm wavelengths and below 5 dB/cm up to 11 µm. Investigation reveals free-carrier absorption as the primary loss factor for 5-6.
View Article and Find Full Text PDFNanowires are widely used for energy harvesting, sensors, and solar cells. We report a study on the role of buffer layer in the growth of zinc oxide (ZnO) nanowires (NWs) synthesised by a chemical bath deposition (CBD) method. To control the thickness of the buffer layer, multilayer coatings corresponding to one layer (100 nm thick), three layers (300 nm thick), and six layers (600 nm thick) of ZnO sol-gel thin-films were used.
View Article and Find Full Text PDFIn this paper, we present how complementary characterization techniques, such as electrical measurements with a vector network analyzer (VNA), optical measurements with a laser Doppler vibrometer (LDV), and numerical simulations with the finite element method, coupled with spectral domain analysis (FEMSDA), allow us to independently access different properties of a SAW device and fully characterize its operation using the coupling-of-modes theory (COM). A set of chemical SAW sensors coated with parylene C layers of different thicknesses (1, 1.5, and 2 µm) and an uncoated sensor were used as test samples.
View Article and Find Full Text PDFIII-Nitride semiconductors are promising materials for on-chip integrated photonics. They provide a wide transparency window from the ultra-violet to the infrared that can be exploited for second-order nonlinear conversions. Here we demonstrate a photonics platform based on epitaxial GaN-on-insulator on silicon.
View Article and Find Full Text PDF