Publications by authors named "E Herreros"

Novel antimalarial compounds targeting both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum, would greatly benefit malaria elimination strategies. However, most compounds affecting asexual blood stage parasites show severely reduced activity against gametocytes. The impact of this activity loss on a compound's transmission-blocking activity is unclear.

View Article and Find Full Text PDF

This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes.

View Article and Find Full Text PDF

New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible.

View Article and Find Full Text PDF

Background And Purpose: Efficacy of current antimalarial treatments is declining as a result of increasing antimalarial drug resistance, so new and potent antimalarial drugs are urgently needed. Azithromycin, an azalide antibiotic, was found useful in malaria therapy, but its efficacy in humans is low.

Experimental Approach: Four compounds belonging to structurally different azalide classes were tested and their activities compared to azithromycin and chloroquine.

View Article and Find Full Text PDF

This study aims to investigate the relation between vaginal microbiota and exposition to intra-amniotic inflammation (IAI). We conducted a prospective cohort study in women with preterm labor <34 weeks who had undergone amniocentesis to rule out IAI. Vaginal samples were collected after amniocentesis.

View Article and Find Full Text PDF