Wearable electroencephalography devices emerge as a cost-effective and ergonomic alternative to gold-standard polysomnography, paving the way for better health monitoring and sleep disorder screening. Machine learning allows to automate sleep stage classification, but trust and reliability issues have hampered its adoption in clinical applications. Estimating uncertainty is a crucial factor in enhancing reliability by identifying regions of heightened and diminished confidence.
View Article and Find Full Text PDFObjectives: To investigate the efficacy of closed-loop acoustic stimulation (CLAS) during slow-wave sleep (SWS) to enhance slow-wave activity (SWA) and SWS in patients with Alzheimer's disease (AD) across multiple nights and to explore associations between stimulation, participant characteristics, and individuals' SWS response.
Design: A 2-week, open-label at-home intervention study utilizing the DREEM2 headband to record sleep data and administer CLAS during SWS.
Setting And Participants: Fifteen older patients with AD (6 women, mean age: 76.
Wearable EEG enables us to capture large amounts of high-quality sleep data for diagnostic purposes. To make full use of this capacity we need high-performance automatic sleep scoring models. To this end, it has been noted that domain mismatch between recording equipment can be considerable, e.
View Article and Find Full Text PDFObjectives: This study aimed to validate a sleep staging algorithm using in-hospital video-electroencephalogram (EEG) in children without epilepsy, with well-controlled epilepsy (WCE), and with drug-resistant epilepsy (DRE).
Methods: Overnight video-EEG, along with electrooculogram (EOG) and chin electromyogram (EMG), was recorded in children between 4 and 18 years of age. Classical sleep staging was performed manually as a ground truth.
With the increasing prevalence of machine learning in critical fields like healthcare, ensuring the safety and reliability of these systems is crucial. Estimating uncertainty plays a vital role in enhancing reliability by identifying areas of high and low confidence and reducing the risk of errors. This study introduces U-PASS, a specialized human-centered machine learning pipeline tailored for clinical applications, which effectively communicates uncertainty to clinical experts and collaborates with them to improve predictions.
View Article and Find Full Text PDF