Abiotic stresses such as extreme temperatures, water-deficit and salinity negatively affect plant growth and development, and cause significant yield losses. It was previously shown that co-overexpression of the Arabidopsis vacuolar pyrophosphatase gene AVP1 and the rice SUMO E3 ligase gene OsSIZ1 in Arabidopsis significantly increased tolerance to multiple abiotic stresses and led to increased seed yield for plants grown under single or multiple abiotic stress conditions. It was hypothesized that there might be synergistic effects between AVP1 overexpression and OsSIZ1 overexpression, which could lead to substantially increased yields if these two genes are co-overexpressed in real crops.
View Article and Find Full Text PDFCotton fiber length is an essential parameter for the cotton industry and cotton research. However, differences between industry- and laboratory-scale ginning may lead to inconsistencies between research and industry results for measured length. Seedcotton from farms is processed in large industry-scale gins, while researchers typically use small laboratory-scale gins.
View Article and Find Full Text PDFMRI has been recognized as one of the most applied medical imaging techniques in clinical practice. However, the presence of background signal coming from water protons in surrounding tissues makes sometimes the visualization of local contrast agents difficult. To remedy this, fluorine has been introduced as a reliable perspective, thanks to its magnetic properties being relatively close to those of protons.
View Article and Find Full Text PDFThis study focuses on the use of Fourier Transform Infrared (FTIR) microspectroscopy to determine chemical changes induced in the nematode Caenorhabditis elegans by supplementation of C. elegans maintenance media (CeMM) by Eicosapentaenoic acid (EPA). Wild-type C.
View Article and Find Full Text PDFIn this study, cotton fabric was successfully modified by titania nanosols prepared by means of the sol-gel process with tetrabutyl orthotitanate [Ti(OC(4)H(9))(4)] as the active ingredient. The cotton fabric was padded with the nanosol solution, dried at 60 degrees C, and cured at 150 degrees C. Scanning electron microscopy showed the presence of a titania film on the fiber surface.
View Article and Find Full Text PDF