The air kerma-area product (KAP) is used for settings of diagnostic reference levels. The International Atomic Energy Agency (IAEA) recommends that doses in diagnostic radiology (including the KAP values) be estimated with an accuracy of at least ± 7% (k = 2). Industry standards defined by the International Electrotechnical Commission (IEC) specify that the uncertainty of KAP meter measurements should be less than ± 25% (k = 2).
View Article and Find Full Text PDFDiagnostics imaging is an essential component of patient selection and treatment planning in oral rehabilitation by means of osseointegrated implants. In 2002, the EAO produced and published guidelines on the use of diagnostic imaging in implant dentistry. Since that time, there have been significant developments in both the application of cone beam computed tomography as well as in the range of surgical and prosthetic applications that can potentially benefit from its use.
View Article and Find Full Text PDFDifferent types of X-ray equipment are used in dental radiology, such as intra-oral, panoramic, cephalometric, cone-beam computed tomography (CBCT) and multi-slice computed tomography (MSCT) units. Digital receptors have replaced film and screen-film systems and other technical developments have been made. The radiation doses arising from different types of examination are sparsely documented and often expressed in different radiation quantities.
View Article and Find Full Text PDFA wide variety of X-ray equipment is used today in dental radiology, including intra-oral, orthopantomographic, cephalometric, cone-beam computed tomography (CBCT) and computed tomography (CT). This raises the question of how the radiation risks resulting from different kinds of examinations should be compared. The risk to the patient is usually expressed in terms of effective dose.
View Article and Find Full Text PDFObjectives: This study evaluates two methods for calculating effective dose, CT dose index (CTDI) and dose-area product (DAP) for a cone beam CT (CBCT) device: 3D Accuitomo at field size 30x40 mm and 3D Accuitomo FPD at field sizes 40x40 mm and 60x60 mm. Furthermore, the effective dose of three commonly used examinations in dental radiology was determined.
Methods: CTDI(100) measurements were performed in a CT head dose phantom with a pencil ionization chamber connected to an electrometer.