Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFThis study is the first one that investigates in detail the bacterial intercellular response to the high density of crystallographic defects including vacancies created in Cu by high pressure torsion. To this aim, samples were deformed by high pressure torsion and afterward, their antibacterial properties against Staphylococcus aureus were analyzed in adhesion tests. As a reference an annealed sample was applied.
View Article and Find Full Text PDFLiMnO (LMO) cathodes present large stability when cycled in aqueous electrolytes, contrasting with their behavior in conventional organic electrolytes in lithium-ion batteries (LIBs). To elucidate the mechanisms underlying this distinctive behavior, we employ unconventional characterization techniques, including variable energy positron annihilation lifetime spectroscopy (VEPALS), tip-enhanced Raman spectroscopy (TERS), and macro-Raman spectroscopy (with tens of μm-size laser spot). These still rather unexplored techniques in the battery field provide complementary information across different length scales, revealing previously hidden features.
View Article and Find Full Text PDFIntroduction: The pathogenesis of chronic subdural hematoma (CSDH) has not been completely understood. However, different mechanisms can result in space-occupying subdural fluid collections, one pathway can be the transformation of an original trauma-induced acute subdural hematoma (ASDH) into a CSDH.
Materials And Methods: All patients with unilateral CSDH, requiring burr hole trephination between 2018 and 2023 were included.
Metal-organic frameworks (MOFs) stand as pivotal porous materials with exceptional surface areas, adaptability, and versatility. Positron Annihilation Lifetime Spectroscopy (PALS) is an indispensable tool for characterizing MOF porosity, especially micro- and mesopores in both open and closed phases. Notably, PALS offers porosity insights independent of probe molecules, which is vital for detailed characterization without structural transformations.
View Article and Find Full Text PDF