Publications by authors named "E H Joe"

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

In this study, we explored the impact of systemic inflammation on initial brain injury and repair processes, including neurite extension and synapse formation. For this purpose, we established a brain injury model by administering adenosine triphosphate (ATP), a component of damage-associated molecular patterns (DAMPs), through stereotaxic injection into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip).

View Article and Find Full Text PDF

Neuroinflammation, the result of microglial activation, is associated with the pathogenesis of a wide range of psychiatric and neurological disorders. Recently, chlorpromazine (CPZ), a dopaminergic D2 receptor antagonist and schizophrenia therapy, was proposed to exert antiinflammatory effects in the central nervous system. Here, we report that the expression of Kv1.

View Article and Find Full Text PDF

Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-β (CSF sPDGFRβ, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRβ in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.

View Article and Find Full Text PDF

In this study, we examined how systemic inflammation affects repair of brain injury. To this end, we created a brain-injury model by stereotaxic injection of ATP, a damage-associated molecular pattern component, into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip).

View Article and Find Full Text PDF