Background: The spiral ganglion hypothesis suggests that pathogenic variants in genes preferentially expressed in the spiral ganglion nerves (SGN), may lead to poor cochlear implant (CI) performance. It was long thought that TMPRSS3 was particularly expressed in the SGNs. However, this is not in line with recent reviews evaluating CI performance in subjects with TMPRSS3-associated sensorineural hearing loss (SNHL) reporting overall beneficial outcomes.
View Article and Find Full Text PDFMeier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females and urogenital anomalies, such as cryptorchidism and hypoplastic labia minora and majora. Typical facial characteristics during childhood comprise a small mouth with full lips and micro-retrognathia.
View Article and Find Full Text PDFObjectives: Mutations in EYA4 can cause nonsyndromic autosomal dominant sensorineural hearing impairment (DFNA10) or a syndromic variant with hearing impairment and dilated cardiomyopathy. A mutation in EYA4 was found in a Dutch family, causing DFNA10. This study is focused on characterizing the hearing impairment in this family.
View Article and Find Full Text PDFPurpose: To describe the phenotype of a novel Wolframin (WFS1) mutation in a family with autosomal dominant optic neuropathy and deafness. The study is designed as a retrospective observational case series.
Methods: Seven members of a Dutch family underwent ophthalmological, otological, and genetical examinations in one institution.
Purpose: To describe the phenotype of Best vitelliform macular dystrophy (BVMD) and to evaluate genotype-phenotype and histopathologic correlations.
Methods: Retrospective analysis of patients with BVMD who underwent an extensive ophthalmic examination, including best-corrected Snellen visual acuity, fundus examination by indirect ophthalmoscopy, fundus photography, fundus autofluorescence, optical coherence tomography, fundus fluorescein angiography, and electrooculography. In addition, molecular genetic analysis of the BEST1 gene was performed in all patients.