Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
View Article and Find Full Text PDFAutophagy is used to degrade cytoplasmic materials, and is critical to maintain cell and organismal health in diverse animals. Here we discuss the regulation, utilization and impact of autophagy on development, including roles in oogenesis, spermatogenesis and embryogenesis in animals. We also describe how autophagy influences postembryonic development in the context of neuronal and cardiac development, wound healing, and tissue regeneration.
View Article and Find Full Text PDFLarge quantities of developmentally synchronized pupal intestines are required for biochemistry experiments. Here, we present a protocol for the mass isolation of staged pupal intestines during Drosophila melanogaster development based on buoyancy in sucrose for biochemical evaluation of protein ubiquitylation. We describe steps for crossing flies, preparation of samples, immunoprecipitation of proteins from staged isolated tissues, and analysis of samples by western blot.
View Article and Find Full Text PDFSelective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy.
View Article and Find Full Text PDF