Publications by authors named "E H Allchin"

Fluorescent RNA-based biosensors are useful tools for real-time detection of molecules in living cells. These biosensors typically consist of a chromophore-binding aptamer and a target-binding aptamer, whereby the chromophore-binding aptamer is destabilized until a target is captured, which causes a conformational change to permit chromophore binding and an increase in fluorescence. The target-binding region is typically fabricated using known riboswitch motifs, which are already known to have target specificity and undergo structural changes upon binding.

View Article and Find Full Text PDF

Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells.

View Article and Find Full Text PDF

Synthetic receptors are powerful tools for engineering mammalian cell-based devices. These biosensors enable cell-based therapies to perform complex tasks such as regulating therapeutic gene expression in response to sensing physiological cues. Although multiple synthetic receptor systems now exist, many aspects of receptor performance are poorly understood.

View Article and Find Full Text PDF

Atmospheric nitrogen deposition has been shown to affect both the structure and the function of heathland ecosystems. Heathlands are semi-natural habitats and, as such, undergo regular management by mowing or burning. Different forms of management remove more or less nutrients from the system, so habitat management has the potential to mitigate some of the effects of atmospheric deposition.

View Article and Find Full Text PDF

The transcytotic pathway followed by the polymeric IgA receptor (pIgR) carrying its bound ligand (dIgA) from the basolateral to the apical surface of polarized MDCK cells has been mapped using morphological tracers. At 20 degreesC dIgA-pIgR internalize to interconnected groups of vacuoles and tubules that comprise the endosomal compartment and in which they codistribute with internalized transferrin receptors (TR) and epidermal growth factor receptors (EGFR). Upon transfer to 37 degreesC the endosome vacuoles develop long tubules that give rise to a distinctive population of 100-nm-diam cup-shaped vesicles containing pIgR.

View Article and Find Full Text PDF