Publications by authors named "E Gyuris"

The quantitative real-time reverse polymerase chain reaction (RRT-PCR) is the preferred test method for the diagnosis of avian influenza (AI), but can be performed only in specialized laboratories. Different antigen detection methods for the diagnosis of AI were previously reported to be specific and sensitive in field outbreaks. These tests can be performed in basic countryside labs.

View Article and Find Full Text PDF

is economically the most important pathogenic species of waterfowl in Europe and Asia. The lack of commercially available vaccines against had prompted this study with the aim to produce temperature-sensitive (ts) clones as candidates for an attenuated live vaccine. The production of ts clones was performed by N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-induced mutagenesis of Hungarian field isolates.

View Article and Find Full Text PDF

Riemerella anatipestifer (RA) is a widely distributed bacterial pathogen of birds responsible for remarkable losses to poultry production, especially among waterfowl. We characterized the genomic diversity of 166 field isolates of RA, collected from geese and ducks, using enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR). The field strains and five reference strains showed 17 distinct patterns consisting of five to 12 bands ranging from approximately 150-1800bp.

View Article and Find Full Text PDF

Anatipestifer disease is a contagious disease caused by Riemerella anatipestifer, affecting primarily ducks, geese and turkeys, and characterised by listlessness, diarrhoea, sneezing, nasal discharge, and nervous signs. Sporadically, it occurs in a wide range of other domesticated and wild birds as well. The incidence and characteristics of the disease seen in the three main host species are summarised based on birds submitted for routine laboratory investigation in Hungary over the period 2010-2014.

View Article and Find Full Text PDF

Applying predatory mites as biological control agents is a well established method against spider mites which are major pests worldwide. Although antipredator responses can influence the outcome of predator-prey interactions, we have limited information about what cues spider mites use to adjust their behavioural antipredator responses. We experimentally exposed two-spotted spider mites (Tetranychus urticae) to different predator-borne cues (using a specialist predator, Phytoseiulus persimilis, or a generalist predator, Amblyseius swirskii), conspecific prey-borne cues, or both, and measured locomotion and egg-laying activity.

View Article and Find Full Text PDF