J Cereb Blood Flow Metab
October 2008
Oxidative stress and zinc release are both known to contribute to neuronal death after hypoglycemia; however, the cause-effect relationships between these events are not established. Here we found, using a rat model of profound hypoglycemia, that the neuronal zinc release and translocation that occur immediately after hypoglycemia are prevented by the nitric oxide synthase inhibitor 7-nitroindazole but not by overexpression of superoxide dismutase-1 (SOD-1). However, overexpression of SOD-1 prevented activation of poly(ADP-ribose) polymerase-1 (PARP-1) and neuronal death, suggesting that zinc release is upstream of superoxide production.
View Article and Find Full Text PDFHypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion.
View Article and Find Full Text PDFBackground And Purpose: Studies using animal models of stroke have shown that human serum albumin (HSA) significantly ameliorates cerebral ischemic injury after both transient and permanent ischemia, even when administered after the onset of ischemia or reperfusion. The mechanism of this effect remains uncertain, and prior studies suggest both indirect hemodynamic and direct cytoprotective effects. HSA is a potent antioxidant, in part because of its strong copper-binding capacity.
View Article and Find Full Text PDFSevere hypoglycemia causes neuronal death and cognitive impairment. Evidence suggests that hypoglycemic neuronal death involves excitotoxicity and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but promotes cell death when extensively activated by DNA damage.
View Article and Find Full Text PDFThe distribution of MUC6 suggests that its primary function is protection of vulnerable epithelial surfaces from damaging effects of constant exposure to a wide range of endogenous caustic or proteolytic agents. A combination of genomic, cDNA. and 3' rapid amplification of cDNA ends techniques was used to isolate the carboxyl-terminal end of MUC6.
View Article and Find Full Text PDF