X-ray photoelectron spectroscopy (XPS) and calculations show that fully alkylated onium cation electronic structure can be tuned using both the alkyl chains and the central onium atom. The key for tuning the central onium atom is methyl longer alkyl chains, allowing selection of the optimum cation for a wide range of applications, including catalysis and biocides.
View Article and Find Full Text PDFUsing a combination of liquid-phase X-ray spectroscopy experiments and small-scale calculations we have gained new insights into the speciation of halozincate anions in ionic liquids (ILs). Both core and valence X-ray photoelectron spectroscopy (XPS) experiments were performed directly on the liquid-phase ILs, supplemented by Zn 1s X-ray absorption near edge structure (XANES) spectroscopy. Density functional theory (DFT) calculations were carried out on both 1- and 2- halozincate anions, in both a generalised solvation model SMD (Solvation Model based on Density) and the gas phase, to give XP spectra and total energy differences; time-dependent DFT was used to calculate XANES spectra.
View Article and Find Full Text PDFUsing a combination of experiments and calculations, we have gained new insights into the nature of anion-cation interactions in ionic liquids (ILs). An X-ray photoelectron spectroscopy (XPS)-derived anion-dependent electrostatic interaction strength scale, determined using XPS core-level binding energies for IL cations, is presented here for 39 different anions, with at least 18 new anions included. Linear correlations of experimental XPS core-level binding energies for IL cations with (a) calculated core binding energies (ab initio molecular dynamics (AIMD) simulations were used to generate high-quality model IL structures followed by single-point density functional theory (DFT) to obtain calculated core binding energies), (b) experimental XPS core-level binding energies for IL anions, and (c) other anion-dependent interaction strength scales led to three main conclusions.
View Article and Find Full Text PDFWe demonstrate a combined experimental and computational approach to probe the electronic structure and atomic environment of an ionic liquid, based on core level binding energies. The 1-butyl-3-methylimidazolium thiocyanate [CCIm][SCN] ionic liquid was studied using ab initio molecular dynamics, and results were compared against previously published and new experimental X-ray photoelectron spectroscopy (XPS) data. The long-held assumption that initial-state effects in XPS dominate the measured binding energies is proven correct, which validates the established premise that the ground state electronic structure of the ionic liquid can be inferred directly from XPS measurements.
View Article and Find Full Text PDFValence electronic structure is crucial for understanding and predicting reactivity. Valence non-resonant X-ray photoelectron spectroscopy (NRXPS) provides a direct method for probing the overall valence electronic structure. However, it is often difficult to separate the varying contributions to NRXPS; for example, contributions of solutes in solvents or functional groups in complex molecules.
View Article and Find Full Text PDF