Virtually all cancer biological attributes are heterogeneous. Because of this, it is currently difficult to reconcile results of cancer transcriptome and proteome experiments. It is also established that cancer somatic mutations arise at rates higher than suspected, but yet are insufficient to explain all cancer cell heterogeneity.
View Article and Find Full Text PDFThe p42/p44 mitogen activated protein kinase (MAPK) pathway participates in a wide range of cellular programs including proliferation, migration, differentiation, and survival. Specific pharmacological inhibitors, like PD98059 and U0126, are often used to inhibit p42/p44 MAPK signaling. However, these inhibitors are not appropriate to study the function of these kinases in whole organisms.
View Article and Find Full Text PDFHypoxia-inducible factor-1alpha (HIF-1alpha) plays a central role in oxygen homeostasis. In normoxia, HIF-1alpha is a short lived protein, whereas hypoxia rapidly increases HIF-1alpha protein levels by relaxing its ubiquitin-proteasome-dependent degradation. In this study, we show that the p42/p44 MAP kinase cascade, known to phosphorylate HIF-1alpha, does not modulate the degradation/stabilization profile of HIF-1alpha.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2000
In rat uterine stromal cells (U(III) cells), an oxidative stress induced by H(2)O(2) caused a dose-dependent release of arachidonic acid (AA) that was independent of intracellular Ca(2+) concentration and was not inhibited by Ca(2+)-dependent phospholipase A(2) (cPLA(2)) inhibitors, nor by protein kinase C (PKC) inhibitors or by PKC down-regulation. H(2)O(2) treatment did not impair AA esterification but significantly increased Ca(2+)-independent PLA(2) (iPLA(2)) activity. Since iPLA(2) specific inhibitor bromoenollactone almost completely suppressed the release of AA induced by H(2)O(2), we conclude that iPLA(2) activity represents the major mechanism by which H(2)O(2) increases the availability of non-esterified AA in U(III) cells.
View Article and Find Full Text PDFAngiogenesis is associated with a number of pathological situations. In this study, we have focused our attention on the role of p42/p44 MAP (mitogen-activated protein) kinases and hypoxia in the control of angiogenesis. We demonstrate that p42/p44 MAP kinases play a pivotal role in angiogenesis by exerting a determinant action at three levels: i) persistent activation of p42/p44 MAP kinases abrogates apoptosis; ii) p42/p44 MAP kinase activity is critical for controlling proliferation and growth arrest of confluent endothelial cells; and iii) p42/p44 MAP kinases promote VEGF (vascular endothelial growth factor) expression by activating its transcription via recruitment of the AP-2/Sp1 (activator protein-2) complex on the proximal region (-88/-66) of the VEGF promoter and by direct phosphorylation of hypoxia-inducible factor 1 alpha (HIF-1 alpha).
View Article and Find Full Text PDF