Mitogen-activated protein kinases (MAPKs) drive key signaling cascades during neuronal survival and degeneration. The localization of kinases to specific subcellular compartments is a critical mechanism to locally control signaling activity and specificity upon stimulation. However, how MAPK signaling components tightly control their localization remains largely unknown.
View Article and Find Full Text PDFEstablishment of neuronal polarity depends on local microtubule (MT) reorganization. The endoplasmic reticulum (ER) consists of cisternae and tubules and, like MTs, forms an extensive network throughout the entire cell. How the two networks interact and control neuronal development is an outstanding question.
View Article and Find Full Text PDFIn neurons, polarized cargo distribution occurs mainly between the soma and axonal and dendritic compartments, and requires coordinated regulation of cytoskeletal remodeling and membrane trafficking. The Golgi complex plays a critical role during neuronal polarization and secretory trafficking has been shown to differentially transport proteins to both axons and dendrites. Besides the Golgi protein sorting, recent data revealed that palmitoylation cycles are an efficient mechanism to localize cytoplasmic, non-transmembrane proteins to particular neuronal compartments, such as the newly formed axon.
View Article and Find Full Text PDFMicrotubule-associated proteins (MAPs) are main candidates to stabilize neuronal microtubules, playing an important role in establishing axon-dendrite polarity. However, how MAPs are selectively targeted to specific neuronal compartments remains poorly understood. Here, we show specific localization of microtubule-associated protein 6 (MAP6)/stable tubule-only polypeptide (STOP) throughout neuronal maturation and its role in axonal development.
View Article and Find Full Text PDFKinesin and dynein motors drive bidirectional cargo transport along microtubules and have a critical role in polarized cargo trafficking in neurons [1, 2]. The kinesin-2 family protein KIF17 is a dendrite-specific motor protein and has been shown to interact with several dendritic cargoes [3-7]. However, the mechanism underlying the dendritic targeting of KIF17 remains poorly understood [8-11].
View Article and Find Full Text PDF