Publications by authors named "E Goillot"

Article Synopsis
  • - The study focuses on NUAK1, a kinase linked to autism, which plays a crucial role in axon branching by influencing how mitochondria are transported within neurons.
  • - Findings indicate that mitochondria help stabilize existing axonal branches rather than create new ones, and a lack of NUAK1 leads to decreased mitochondrial function and energy supply in neurons.
  • - The research suggests that NUAK1 regulates axon branching via the microprotein BRAWNIN, highlighting its dual role in managing mitochondrial distribution and metabolic activity.
View Article and Find Full Text PDF

Glycogen storage disorder type III (GSDIII), or debranching enzyme (GDE) deficiency, is a rare metabolic disorder characterized by variable liver, cardiac, and skeletal muscle involvement. GSDIII manifests with liver symptoms in infancy and muscle involvement during early adulthood. Muscle biopsy is mainly performed in patients diagnosed in adulthood, as routine diagnosis relies on blood or liver GDE analysis, followed by AGL gene sequencing.

View Article and Find Full Text PDF

Background: The protein kinase mechanistic target of rapamycin (mTOR) controls cellular growth and metabolism. Although balanced mTOR signalling is required for proper muscle homeostasis, partial mTOR inhibition by rapamycin has beneficial effects on various muscle disorders and age-related pathologies. Besides, more potent mTOR inhibitors targeting mTOR catalytic activity have been developed and are in clinical trials.

View Article and Find Full Text PDF

We report on a wavelet based space-scale decomposition method for analyzing the response of living muscle precursor cells (C2C12 myoblasts and myotubes) upon sharp indentation with an AFM cantilever and quantifying their aptitude to sustain such a local shear strain. Beyond global mechanical parameters which are currently used as markers of cell contractility, we emphasize the necessity of characterizing more closely the local fluctuations of the shear relaxation modulus as they carry important clues about the mechanisms of cytoskeleton strain release. Rupture events encountered during fixed velocity shear strain are interpreted as local disruptions of the actin cytoskeleton structures, the strongest (brittle) ones being produced by the tighter and stiffer stress fibers or actin agglomerates.

View Article and Find Full Text PDF

Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree.

View Article and Find Full Text PDF