Land surface temperature is predicted to increase by 0.2 °C per decade due to climate change, although with considerable regional variability, and heatwaves are predicted to increase markedly in the future. These changes will affect where crops can be grown in the future.
View Article and Find Full Text PDFThe critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (T). However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change.
View Article and Find Full Text PDFTropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]) and hydraulic safety margins (for example, HSM) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation.
View Article and Find Full Text PDFPremise: Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly.
Methods: We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought.
Results: Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit.