Publications by authors named "E Giraldez"

Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

This article describes a predictive model of explosive detonation velocity and pressure based on first-order approximation of the detonation velocity equation. Detonation pressure was calculated from equations derived from the ideal detonation theory since that pressure is functionally related to detonation velocity. In the model calibration process, several product formation hierarchies were explored, with the best results yielded by the Kamlet and Jacobs (KJ) hierarchy.

View Article and Find Full Text PDF

Background: The objective of this study was to develop a strategy to optimize medical health surveillance protocols for administrative employees using video display terminals (VDTs). A total of 2453 medical examinations were analysed for VDT users in various sectors. From these data, using Bayesian statistics we inferred which factors were most relevant to medical diagnosis of the main disorders affecting VDT users.

View Article and Find Full Text PDF

Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed.

View Article and Find Full Text PDF