Background: Cardiogenic shock (CS) is a heterogeneous clinical syndrome, making it challenging to predict patient trajectory and response to treatment. This study aims to identify biological/molecular CS subphenotypes, evaluate their association with outcome, and explore their impact on heterogeneity of treatment effect (ShockCO-OP, NCT06376318).
Methods: We used unsupervised clustering to integrate plasma biomarker data from two prospective cohorts of CS patients: CardShock (N = 205 [2010-2012, NCT01374867]) and the French and European Outcome reGistry in Intensive Care Units (FROG-ICU) (N = 228 [2011-2013, NCT01367093]) to determine the optimal number of classes.
Background: Due to their invasiveness, arterial lines are not typically used in routine monitoring, despite their superior responsiveness in hemodynamic monitoring and detecting intraoperative hypotension. To address this issue, noninvasive, continuous arterial pressure monitoring is necessary. We developed a deep-learning model that reconstructs continuous mean arterial pressure (MAP) using the photoplethysmograhy (PPG) signal and compared it to the arterial line gold standard.
View Article and Find Full Text PDFObjective: Mean arterial pressure is widely used as the variable to monitor during anesthesia. But there are many other variables proposed to define intraoperative arterial hypotension. The goal of the present study was to search arterial pressure variables linked with prolonged postoperative length of stay (pLOS).
View Article and Find Full Text PDF