Publications by authors named "E Gaud"

Objective: Contrast-enhanced MRI could be useful to guide high-intensity focused ultrasound treatment (HIFU), but the effects of HIFU on gadolinium-based agents is not known. Here, we tested in vitro the stability of gadoteridol and gadobenate dimeglumine, two widely used MR contrast agents, after exposure to HIFU at power levels typically applied in the clinical practice.

Methods: 0.

View Article and Find Full Text PDF

Focused ultrasound and microbubble (FUS + MB)-mediated blood-brain barrier (BBB) permeability enhancement can facilitate targeted brain-drug delivery. While controlling the magnitude of BBB permeability enhancement is necessary to limit tissue damage, little work has attempted to decouple these concepts. This work investigated the relationship between BBB permeability enhancement and the relative transcription of inflammatory mediators 4 h following sonication.

View Article and Find Full Text PDF

Recent advances in the field of monodisperse microbubble synthesis by flow focusing allow for the production of foam-free, highly concentrated and monodisperse lipid-coated microbubble suspensions. It has been found that in vitro, such monodisperse ultrasound contrast agents (UCAs) improve the sensitivity of contrast-enhanced ultrasound imaging. Here, we present the first in vivo study in the left ventricle of rat and pig with this new monodisperse bubble agent.

View Article and Find Full Text PDF

Over the last two decades, liquid perfluorocarbon nanodroplets (PFC-NDs), also known as Phase Change Contrast Agents (PCCAs), that are capable of vaporizing into gaseous echogenic microbubbles via an external stimulus, have gained much attention for diagnostic and therapeutic applications. In the present work, a microfluidic platform is evaluated for the preparation of various size-controlled nanodroplets. Here, two major lines of investigations were carried out.

View Article and Find Full Text PDF

Monodisperse phospholipid-coated ultrasound contrast agent (UCA) microbubbles can be directly synthesized in a lab-on-a-chip flow-focusing device. However, high total lipid concentrations are required to minimize on-chip bubble coalescence. Here, we characterize the coalescence probability and the long-term size stability of microbubbles formed using DPPC and DSPC based lipid mixtures as a function of temperature.

View Article and Find Full Text PDF