Publications by authors named "E Garenaux"

The glycosylation process is extremely heterogeneous, dynamic, and complex compared with any other post-translational modification of protein. In the context of recombinant glycoproteins, glycosylation is a critical attribute as glycans could dramatically alter protein functions and properties including activity, half-life, in vivo localization, stability, and, last but not least, immunogenicity. Liquid chromatography combined to mass spectrometry constitutes the most powerful analytical approach to achieve the comprehensive glycan profile description or comparison of glycoproteins.

View Article and Find Full Text PDF

Unlabelled: Essentials Glycosylation heterogeneity of recombinant proteins affects pharmacokinetics and immunogenicity. N-glycomics/glycoproteomics of plasma-derived Factor VIII and 6 recombinant FVIIIs were compared. Depending on cell line, significant differences to plasma-derived FVIII were observed.

View Article and Find Full Text PDF

A novel mechanism is revealed by which clinical isolates of adherent-invasive (AIEC) penetrate into the epithelial cell layer, replicate, and establish biofilms in Crohn's disease. AIEC uses the FimH fimbrial adhesin to bind to oligomannose glycans on the surface of host cells. Oligomannose glycans exposed on early apoptotic cells are the preferred binding targets of AIEC, so apoptotic cells serve as potential entry points for bacteria into the epithelial cell layer.

View Article and Find Full Text PDF

Precise directional control of pollen-tube growth by pistil tissue is critical for successful fertilization of flowering plants [1-3]. Ovular attractant peptides, which are secreted from two synergid cells on the side of the egg cell, have been identified [4-6]. Emerging evidence suggests that the ovular directional cue is not sufficient for successful guidance but that competency control by the pistil is critical for the response of pollen tubes to the attraction signal [1, 3, 7].

View Article and Find Full Text PDF

The spores of the Bacillus cereus group (B. cereus, Bacillus anthracis, and Bacillus thuringiensis) are surrounded by a paracrystalline flexible yet resistant layer called exosporium that plays a major role in spore adhesion and virulence. The major constituent of its hairlike surface, the trimerized glycoprotein BclA, is attached to the basal layer through an N-terminal domain.

View Article and Find Full Text PDF