The dopamine, serotonin and glutamate systems are jointly involved in the pathogenesis and pharmacotherapy of schizophrenia. We formulated a hypothesis that polymorphic variants of the GRIN2A, GRM3, and GRM7 genes may be associated with the development of hyperprolactinemia in patients with schizophrenia taking conventional and atypical antipsychotics as basic treatment. 432 Caucasian patients diagnosed with schizophrenia were examined.
View Article and Find Full Text PDFBackground: Tardive dyskinesia (TD) is an extrapyramidal side effect of the long-term use of antipsychotics. In the present study, the role of glutamatergic system genes in the pathogenesis of total TD, as well as two phenotypic forms, orofacial TD and limb-truncal TD, was studied.
Methods: A set of 46 SNPs of the glutamatergic system genes (, , , , , , , , ) was studied in a population of 704 Caucasian patients with schizophrenia.
Background: Schizophrenia is a complex mental disorder with a high heritability. Dysfunction of the N-methyl-D-aspartate (NMDA)-type glutamate receptors may be involved in the pathogenesis of schizophrenia. In this study, we examined the contribution of and (Glutamate Ionotropic Receptor NMDA Type Subunit 2A/2B) polymorphisms to the clinical features of schizophrenia, such as the leading symptoms, the type of course, and the age of onset.
View Article and Find Full Text PDFBackground: Schizophrenia is a severe highly heritable mental disorder. The clinical heterogeneity of schizophrenia is expressed in the difference in the leading symptoms and course of the disease. Identifying the genetic variants that affect clinical heterogeneity may ultimately reveal the genetic basis of the features of schizophrenia and suggest novel treatment targets.
View Article and Find Full Text PDF