Publications by authors named "E G Mimnaugh"

Geldanamycin and Velcade, new anticancer drugs with novel mechanisms of action, are currently undergoing extensive clinical trials. Geldanamycin interrupts Hsp90 chaperone activity and causes down-regulation of its many client proteins by the ubiquitin-proteasome pathway; Velcade is a specific proteasome inhibitor. Misfolded Hsp90 clients within the endoplasmic reticulum (ER) lumen are cleared by ER--associated protein degradation, a sequential process requiring valosin-containing protein (VCP)-dependent retrotranslocation followed by ubiquitination and proteasomal proteolysis.

View Article and Find Full Text PDF

Protein ubiquitination is crucial to many diverse and critical functions of cells. Although it has been long known that conjugation of ubiquitin to proteins results in their destruction by the proteasome, recently it has become apparent that reversible protein ubiquitination, particularly monoubiquitination, performs regulatory functions in cells, analogous to protein phosphorylation. The most powerful and sensitive technique for measuring specific protein ubiquitination is antiubiquitin immunoblotting of the immunoprecipitated protein after gel electrophoresis.

View Article and Find Full Text PDF

The molecular chaperone Hsp90 modulates the function of specific cell signaling proteins. Although targeting Hsp90 with the antibiotic inhibitor geldanamycin (GA) may be a promising approach for cancer treatment, little is known about the determinants of Hsp90 interaction with its client proteins. Here we identify a loop within the N lobe of the kinase domain of ErbB2 that determines Hsp90 binding.

View Article and Find Full Text PDF

The ansamycin antibiotic, geldanamycin, targets the hsp 90 protein chaperone and promotes ubiquitin-dependent proteasomal degradation of its numerous client proteins. Bortezomib is a specific and potent proteasome inhibitor. Both bortezomib and the geldanamycin analogue, 17-N-allylamino-17-demethoxy geldanamycin, are in separate clinical trials as new anticancer drugs.

View Article and Find Full Text PDF

The ansamycin geldanamycin (GM) and its derivative, 17AAG, now in early clinical trials in cancer patients, have potent activity against several cancer cells at low nanomolar concentrations. The main target of these drugs is the molecular chaperone heat shock protein 90. Contrary to the high antitumor potency, the affinity of these drugs for the chaperone was determined to be approximately 1 microM.

View Article and Find Full Text PDF