Contaminated water has remained an unsolved problem for decades, particularly when the contamination derived from heavy metals. A possible solution is to mix the contaminated water with magnetic nanoparticles so that an adsorption process can take place. In that frame, Tesla valve micromixer and Fe3O4 magnetic nanoparticles were selected to perform simulations for encounter maximum mixing efficiency.
View Article and Find Full Text PDFDuring the metastasis of cancer cells, circulating tumor cells (CTCs) are released from the primary tumor, reach the bloodstream, and colonize new organs. A potential reduction of metastasis may be accomplished through the use of nanoparticles in micromixers in order to capture the CTCs that circulates in blood. In the present study, the effective mixing of nanoparticles and the blood that carries the CTCs are investigated.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2022
Background And Objective: Serious side effects are occurred during the cancer therapy. Magnetic driving of nanoparticles is a novel method for the elimination of these effects by supplying with anticancer drug or increase the temperature of the infected area. For this reason, a numerical model for optimal guidance of nanoparticles, through the gradient magnetic field, inside the human artery system is presented in this study.
View Article and Find Full Text PDFResearch on contamination of groundwater and drinking water is of major importance. Due to the rapid and significant progress in the last decade in nanotechnology and its potential applications to water purification, such as adsorption of heavy metal ion from contaminated water, a wide number of articles have been published. An evaluating frame of the main findings of recent research on heavy metal removal using magnetic nanoparticles, with emphasis on water quality and method applicability, is presented.
View Article and Find Full Text PDFBackground And Objectives: Glioblastoma multiforme is considered as one of the most aggressive types of cancer, while various treatment techniques have been proposed. Magnetic nanoparticles (MNPs) loaded with drug and magnetically controlled and targeted to tissues affected by disease, is considered as a possible treatment. However, MNPs are difficult to penetrate the central nervous system and approach the unhealthy tissue, because of the blood-brain barrier (BBB).
View Article and Find Full Text PDF