Entropy (Basel)
April 2024
In this work, we discuss an application of the "inverse problem" method to find the external trapping potential, which has particular N trapped soliton-like solutions of the Gross-Pitaevskii equation (GPE) also known as the cubic nonlinear Schrödinger equation (NLSE). This inverse method assumes particular forms for the trapped soliton wave function, which then determines the (unique) external (confining) potential. The latter renders these assumed waveforms exact solutions of the GPE (NLSE) for both attractive (g<0) and repulsive (g>0) self-interactions.
View Article and Find Full Text PDFIn this work, we study the existence and stability of constant density (flat-top) solutions to the Gross-Pitaevskii equation (GPE) in confining potentials. These are constructed by using the "inverse problem" approach which corresponds to the identification of confining potentials that make flat-top waveforms exact solutions to the GPE. In the one-dimensional case, the exact solution is the sum of stationary kink and antikink solutions, and in the overlapping region, the density is constant.
View Article and Find Full Text PDFThis work focuses on the study of time-periodic solutions, including breathers, in a nonlinear lattice consisting of elements whose contacts alternate between strain hardening and strain softening. The existence, stability, and bifurcation structure of such solutions, as well as the system dynamics in the presence of damping and driving, are studied systematically. It is found that the linear resonant peaks in the system bend toward the frequency gap in the presence of nonlinearity.
View Article and Find Full Text PDFWe systematically study linear and nonlinear wave propagation in a chain composed of piecewise-linear bistable springs. Such bistable systems are ideal test beds for supporting nonlinear wave dynamical features including transition and (supersonic) solitary waves. We show that bistable chains can support the propagation of subsonic wave packets which in turn can be trapped by a low-energy phase to induce energy localization.
View Article and Find Full Text PDF