Parasites are important components of biodiversity and contributors to ecosystem functioning, but are often neglected in ecological studies. Most studies examine model parasite systems or single taxa, thus our understanding of community composition is lacking. Here, the seasonal and annual dynamics of parasites was quantified using a 5-year metabarcoding time-series of freshwater plankton, collected weekly.
View Article and Find Full Text PDF4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational redesign to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged with residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole.
View Article and Find Full Text PDFFungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla.
View Article and Find Full Text PDFEucalyptus camaldulensis EcDQD/SDH2 and 3 combine gallate formation, dehydroquinate dehydratase, and shikimate dehydrogenase activities. They are candidates for providing the essential gallate for the biosynthesis of the aluminum-detoxifying metabolite oenothein B. The tree species Eucalyptus camaldulensis shows exceptionally high tolerance against aluminum, a widespread toxic metal in acidic soils.
View Article and Find Full Text PDF