Publications by authors named "E Friauf"

During electrochemical signal transmission through synapses, triggered by an action potential (AP), a stochastic number of synaptic vesicles (SVs), called the "quantal content," release neurotransmitters in the synaptic cleft. It is widely accepted that the quantal content probability distribution is a binomial based on the number of ready-release SVs in the presynaptic terminal. But the latter number itself fluctuates due to its stochastic replenishment, hence the actual distribution of quantal content is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The lateral superior olive (LSO) is a part of the brain that helps us locate sounds by looking at the different loudness levels in each ear.
  • Scientists studied young mice to learn about the different types of neurons (tiny brain cells) in the LSO and found two main groups: ones that help you sense sounds (pLSOs) and others that protect your ears from loud noises (LOCs).
  • They discovered many important genes that make these neurons work, some of which are new to their research, helping us understand how these neurons develop and function in hearing.
View Article and Find Full Text PDF

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side.

View Article and Find Full Text PDF

Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission.

View Article and Find Full Text PDF

Synaptic transmission is controlled by re-uptake systems that reduce transmitter concentrations in the synaptic cleft and recycle the transmitter into presynaptic terminals. The re-uptake systems are thought to ensure cytosolic concentrations in the terminals that are sufficient for reloading empty synaptic vesicles (SVs). Genetic deletion of glycine transporter 2 (GlyT2) results in severely disrupted inhibitory neurotransmission and ultimately to death.

View Article and Find Full Text PDF