Publications by authors named "E Fredro-Kumbaradzi"

During the write-up of the meeting summary reports from the 2019 dissolution similarity workshop held at the University of Maryland's Center of Excellence in Regulatory Science and Innovation (M-CERSI), several coauthors continued their discussions to develop a "best-practice" document defining the steps required to assess dissolution profiles in support of certain biowaivers and postapproval changes. In previous reports, current challenges related to dissolution profile studies were discussed such that the steps outlined in the two flow charts ("decision trees") presented here can be applied. These decision trees include both recommendations for the use of equivalence procedures between reference and test products as well as application of the dissolution safe space concept.

View Article and Find Full Text PDF

This report summarizes podium presentations and breakout sessions from the second day of the 2019 M-CERSI workshop on In Vitro Dissolution Similarity Assessment in Support of Drug Product Quality: What, How, and When? Presenters from the U.S. Food and Drug Administration (FDA), Health Canada (HC), European Medicines Agency (EMA), Brazilian Health Surveillance Agency (ANVISA), and the pharmaceutical industry shared experiences/concerns with dissolution profile similarity assessment supporting minor/moderate Chemistry, Manufacturing and Control (CMC) changes.

View Article and Find Full Text PDF

Multilamellar liposomes containing 5-fluorouracil (5-FU) were prepared by modified lipid film hydration method and were lyophilized with or without saccharose as cryoprotectant. The effect of lyophilization on the stability of liposomes was evaluated by comparing the vesicle size, encapsulation efficiency and the drug release rate before and after lyophilization/rehydration. The process of lyophilization, without cryoprotectant, resulted in particle size increase and significant content leakage.

View Article and Find Full Text PDF

Liposome gels bearing an antineoplastic agent, 5-fluorouracil, intended for topical application have been prepared and drug release properties in vitro have been evaluated. Different formulations of liposomes were prepared by the film hydration method by varying the lipid phase composition (PL 90H/cholesterol mass ratio) and hydration conditions of dry lipid film (drug/aqueous phase mass ratio). Topical liposome gels were prepared by incorporation of lyophilized liposomes into a structured vehicle (1%, m/m, chitosan gel base).

View Article and Find Full Text PDF