An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome".
View Article and Find Full Text PDFThe ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated.
View Article and Find Full Text PDFAcid mine drainage (AMD) caused by the oxidation of sulphide minerals found in mine waste is a global environmental concern, especially in water-restricted countries with heavy mining industries. Implementing AMD treatment and prevention programs can be extremely expensive, hence the need to identify environmentally sustainable treatment and preventative techniques to mitigate the potential of AMD formation. Soil covers and blends have been identified as an attractive approach.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) have been a problem in the environment for an extended period. They are mostly derived from petroleum, coal tar and oil spills that travel and are immobilized in wastewater/water sources. Their presence in the environment causes a hazard to humans due to their toxicity and carcinogenic properties.
View Article and Find Full Text PDFThe valorisation of wastewaters for minerals recovery and their potential beneficiation has gained enormous attention recently. In this study the removal of phosphate and ammonia from municipal wastewater using activated magnesite resulted in the formation of struvite. The optimum conditions for the synthesis of struvite were 60 min of mixing, 300 rpm mixing speed, 1 g of activated magnesite and room temperature, whilst optimum conditions for the treatment of acid mine drainage (AMD) using the synthesized struvite were 45 min of mixing, 20 g of struvite dosage, 1000 mL, and 300 rpm mixing speed.
View Article and Find Full Text PDF