To fulfil their function, epithelial tissues need to sustain mechanical stresses and avoid rupture. Although rupture is usually undesired, it is central to some developmental processes, for example, blastocoel formation. Nonetheless, little is known about tissue rupture because it is a multiscale phenomenon that necessitates comprehension of the interplay between mechanical forces and biological processes at the molecular and cellular scales.
View Article and Find Full Text PDFBackground: Endomyocardial fibrosis is a grim disease. It is the most common restrictive cardiomyopathy worldwide, but the exact etiology and pathogenesis both remain unknown. Endomyocardial fibrosis is recurrently associated with chronic eosinophilia and probable dietary, environmental, and infectious factors, which contribute not only to the onset of the disease (an inflammatory process) but also to its progression and maintenance (endomyocardial damage and scar formation).
View Article and Find Full Text PDFProper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex.
View Article and Find Full Text PDFIn Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage.
View Article and Find Full Text PDFCell shape is controlled by the submembranous cortex, an actomyosin network mainly generated by two actin nucleators: the Arp2/3 complex and the formin mDia1. Changes in relative nucleator activity may alter cortical organization, mechanics and cell shape. Here we investigate how nucleation-promoting factors mediate interactions between nucleators.
View Article and Find Full Text PDF