Publications by authors named "E Faizuloev"

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

As novel SARS-CoV-2 Variants of Concern emerge, the efficacy of existing vaccines against COVID-19 is declining. A possible solution to this problem lies in the development of a live attenuated vaccine potentially able of providing cross-protective activity against a wide range of SARS-CoV-2 antigenic variants. Cold-adapted (ca) SARS-CoV-2 variants, Dubrovka-ca-B4 (D-B4) and Dubrovka-ca-D2 (D-D2), were obtained after long-term passaging of the Dubrovka (D) strain in Vero cells at reduced temperatures.

View Article and Find Full Text PDF

Introduction: The variability of SARS-CoV-2 appeared to be higher than expected, the emergence of new variants raises concerns. The aim of the work was to compare the pathogenicity of the Wuhan and BA.1.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) accounts for almost half of all primary malignant brain tumors in adults and has a poor prognosis. Here we demonstrated the oncolytic potential of the L-16 vaccine strain of measles virus (MV) against primary human GBM cells and characterized the genetic patterns that determine the sensitivity of primary human GBM cells to oncolytic therapy. MV replicated in all GBM cells, and seven out of eight cell lines underwent complete or partial oncolysis.

View Article and Find Full Text PDF

One of the most important steps in the development of drugs and vaccines against a new coronavirus infection is their testing on a relevant animal model. The laboratory mouse, with well-studied immunology, is the preferred mammalian model in experimental medicine. However, mice are not susceptible to infection with SARS-CoV-2 due to the lack of human angiotensin-converting enzyme (hACE2), which is the cell receptor of SARS-CoV-2 and necessary for the entry of the virus into the cell.

View Article and Find Full Text PDF