The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 2022. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.
View Article and Find Full Text PDFSome active asteroids have been proposed to be formed as a result of impact events. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA, in addition to having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions.
View Article and Find Full Text PDFJ Geophys Res Solid Earth
December 2021
The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), launched May 22, 2018 and collecting science data since June 2018, is extending the 15-year data record of Earth mass change established by its predecessor GRACE mission (2002-2017). The GRACE-FO satellites carry onboard a novel technology demonstration instrument for intersatellite ranging, the Laser Ranging Interferometer (LRI), in addition to the microwave interferometer (MWI) carried on GRACE. The LRI has out-performed its in-orbit performance requirements both in terms of accuracy as well as the duration of tracking.
View Article and Find Full Text PDFBackground: There has been limited evaluation of tools for teaching social determinants of health (SDOH).
Objective: We evaluated a field trip as a tool for teaching SDOH to incoming medical interns.
Methods: Incoming interns from The George Washington University participated in a bus field trip of Washington, DC, guided by community partners.
Dynamical simulations of the coupled rotational and orbital dynamics of binary near-Earth asteroid 66391 (1999 KW4) suggest that it is excited as a result of perturbations from the Sun during perihelion passages. Excitation of the mutual orbit will stimulate complex fluctuations in the orbit and rotation of both components, inducing the attitude of the smaller component to have large variation within some orbits and to hardly vary within others. The primary's proximity to its rotational stability limit suggests an origin from spin-up and disruption of a loosely bound precursor within the past million years.
View Article and Find Full Text PDF