Publications by authors named "E Fabian"

Introduction: All cosmetic ingredients must be evaluated for their safety to consumers. In the absence of data, systemic concentrations of ingredients can be predicted using Physiologically based Pharmacokinetic (PBPK) models. However, more examples are needed to demonstrate how they can be validated and applied in Next-Generation Risk Assessments (NGRA) of cosmetic ingredients.

View Article and Find Full Text PDF
Article Synopsis
  • Standard information reporting is essential for consistent assay conditions and data, enabling easier comparisons between laboratories.
  • The publication presents the Minimum Information for Reporting on the TEER assay (MIRTA), a key method used to assess cell culture models and toxicity potential.
  • Developed through an international collaboration, the recommendations from the RespTox Collaborative aim to improve data transparency, reproducibility, and quality in both respiratory and other cell systems.
View Article and Find Full Text PDF

In a read-across assessment of the safety of genistein and daidzein in cosmetic products, additional information was required to account for differences in their systemic exposure after topical application in a typical body lotion formulation. Therefore, we measured the penetration and metabolism of two doses (3 and 30 nmoles/cm) of genistein and daidzein applied in ethanol and in a body formulation to fresh pig skin, fresh and frozen human skin, and PhenionFT models. Both chemicals readily penetrated all skin models when applied in ethanol.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the skin penetration and metabolism of genistein and daidzein, two compounds lacking OECD-compliant studies, using various skin models including fresh pig skin and human skin.
  • It was found that all models showed similar dermal absorption rates for both compounds, with some differences in metabolite production, particularly lower sulfate conjugates in pig skin.
  • Freezing human skin affected the metabolism but did not change the overall absorption, indicating that genistein and daidzein can extensively penetrate skin when applied in ethanol despite differences in metabolism across models.
View Article and Find Full Text PDF

We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only data were used for daidzein, while and legacy data for genistein were considered. The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.

View Article and Find Full Text PDF