Unlabelled: Heterotrophic marine bacteria utilize and recycle dissolved organic matter (DOM), impacting biogeochemical cycles. It is currently unclear to what extent distinct DOM components can be used by different heterotrophic clades. Here, we ask how a natural microbial community from the Eastern Mediterranean Sea (EMS) responds to different molecular classes of DOM (peptides, amino acids, amino sugars, disaccharides, monosaccharides, and organic acids) comprising much of the biomass of living organisms.
View Article and Find Full Text PDFThe interpretation of complex biological datasets requires the identification of representative variables that describe the data without critical information loss. This is particularly important in the analysis of large phenotypic datasets (phenomics). Here we introduce Multi-Attribute Subset Selection (MASS), an algorithm which separates a matrix of phenotypes (e.
View Article and Find Full Text PDFMicrobial communities, through their metabolism, drive carbon cycling in marine environments. These complex communities are composed of many different microorganisms including heterotrophic bacteria, each with its own nutritional needs and metabolic capabilities. Yet, models of ecosystem processes typically treat heterotrophic bacteria as a "black box," which does not resolve metabolic heterogeneity nor address ecologically important processes such as the successive modification of different types of organic matter.
View Article and Find Full Text PDFIdentifying transcription factor (TF) binding to noncoding variants, uncharacterized DNA motifs, and repetitive genomic elements has been technically and computationally challenging. Current experimental methods, such as chromatin immunoprecipitation, generally test one TF at a time, and computational motif algorithms often lead to false-positive and -negative predictions. To address these limitations, we developed an experimental approach based on enhanced yeast one-hybrid assays.
View Article and Find Full Text PDF