Publications by authors named "E F Penka"

Article Synopsis
  • Antiviral drugs targeting SARS-CoV-2, particularly the main protease (M), are crucial for preventing future COVID outbreaks.
  • The study reveals that M undergoes redox regulation, switching between an active dimer and a dormant monomer, affecting its function through modifications of specific cysteine residues.
  • The findings also identify potential druggable sites in the form of conserved redox switches, which could be found in main proteases of other coronaviruses like MERS-CoV and SARS-CoV.
View Article and Find Full Text PDF

The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds.

View Article and Find Full Text PDF

The process by which a molecule in an intense laser field ionizes more efficiently as its bond length increases towards a critical distance R(c) is known as charge resonance enhanced ionization (CREI). We make a series of measurements of this process for CO(2), by varying pulse duration from 7 to 200 fs, in order to identify the charge states and time scales involved. We find that for the 4+ and higher charge states, 100 fs is the time scale required to reach the critical geometry ≈ 2.

View Article and Find Full Text PDF

The nuclear import of spliceosomal UsnRNPs is mediated by the transport adaptor snurportin 1 (SPN1), which specifically recognizes the 2,2,7-trimethylguanosine (m(3)G) cap at the 5' end of UsnRNAs. Human SPN1 was overexpressed as a GST-fusion protein in Escherichia coli and purified to homogeneity. Since full-length SPN1 did not crystallize, limited proteolysis experiments were performed and stable digestion products were analyzed for functionality with respect to m(3)G cap-binding activity and subsequently used for crystallization trials.

View Article and Find Full Text PDF

Protein disulfide isomerase (PDI) is a multifunctional protein of the endoplasmic reticulum, which catalyzes the formation, breakage and rearrangement of disulfide bonds during protein folding. It consists of four domains designated a, b, b and a. Both a and a domains contains an active site with the sequence motif -Cys-Gly-His-Cys-involved directly in thiol-disulfide exchange reactions.

View Article and Find Full Text PDF