Publications by authors named "E F Kolesanova"

In this work, we conducted a study of the interaction between DNA and favipiravir (FAV). This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV.

View Article and Find Full Text PDF

Polystyrene-based support Bio-Beads SM-2 was employed for desalting peptide-p-nitroanilides from Oxone. Neither tosyl, 9-fluorenyl(methoxycarbonyl), p-nitroanilide groups nor indolyl or p-hydroxyphenyl side-chains of Trp and Tyr ensured an efficient adsorption of peptide-p-nitroanilides onto Bio-Beads SM-2. Only unsubstituted phenyl-containing protection groups (carbobenzoxy or benzoyl) and Phe residues provided the adsorption of peptides on Bio-Beads SM-2 and their efficient desalting.

View Article and Find Full Text PDF

The review highlights the safety issues of drug delivery systems based on liposomes. Due to their small sizes (about 80-120 nm, sometimes even smaller), phospholipid nanoparticles interact intensively with living systems during parenteral administration. This interaction significantly affects both their transport role and safety; therefore, special attention is paid to these issues.

View Article and Find Full Text PDF

The glutarylation of lysine residues in proteins attracts attention as a possible mechanism of metabolic regulation, perturbed in pathologies. The visualization of protein glutarylation by antibodies specific to ε-glutaryl-lysine residues may be particularly useful to reveal pathogenic mutations in the relevant enzymes. We purified such antibodies from the rabbit antiserum, obtained after sequential immunization with two artificially glutarylated proteins, using affinity chromatography on ε-glutaryl-lysine-containing sorbents.

View Article and Find Full Text PDF

Bacteriophage MS2 was employed for targeted delivery of an apoptosis-inducing agent, Tl+, into a tumor tissue. The targeted delivery was ensured by iRGD peptide, a ligand of integrins presumably located on the surface of endotheliocytes of the tumor tissue neovasculature and certain tumor cells. The synthesized peptide was conjugated to MS2 capsid proteins.

View Article and Find Full Text PDF