Publications by authors named "E El-Bastawissy"

Targeting DNA repair, like PARP-1 and TOPO-I, shows promise in cancer therapy. However, resistance to single agents requires complex and costly combination strategies with significant side effects. Thus, there's an urgent need for single agents with dual inhibition.

View Article and Find Full Text PDF

In part due to the resilience of cellular feedback pathways that develop therapeutic resistance to targeting the EGFR alone, using EGFR inhibitors alone was demonstrated to be unsuccessful in clinical trials. The over-activation of the signal transducer/activator of transcription 3 (STAT3) during the administration of an EGFR inhibitor is expected to play a substantial part in the failure and resistance of EGFR inhibitor treatment. Therein, we proposed a hypothesis that induced STAT3-mediated resistance to EGFR inhibition therapy could be addressed by a dual inhibition of EGFR and STAT3 method.

View Article and Find Full Text PDF

The current study discovered fifteen new thieno[2,3-d]pyrimidine derivatives with potential anticancer action, including 5a-l, 6, and 7a-b. Results from the NCI screening revealed that compounds 5f-i and 7a significantly inhibited the proliferation of MDA-MB-468 cells at mean GI% and GI levels. Compared to staurosporine, these compounds (5f-i and 7a) demonstrated better safety towards typical WI-38 cells.

View Article and Find Full Text PDF

MAPK pathway sparkles with RTK activation, passes through subsequent downstream RAS-RAF-MEK-ERK signaling cascades, with consequent direct and indirect CDK4/6 signaling activation, and ends with cell survival, division, and proliferation. However, the emergence of anomalies such as mutations or overexpression in one or more points of the pathway could lead to cancer development and drug resistance. Therefore, designing small inhibitors to strike multitudinous MAPK pathway steps could be a promising synergistic strategy to confine cancer.

View Article and Find Full Text PDF

Mutant isocitrate dehydrogenase (IDH) 2 "IDH2m" acquires a neo-enzymatic activity reducing α-ketoglutarate to an oncometabolite, D-2-hydroxyglutarate (2-HG). Three -triazine series were designed and synthesised using enasidenib as a lead compound. anticancer screening National Cancer Institute "NCI" revealed that analogues , , and were most potent, with mean growth inhibition percentage "GI%" = 66.

View Article and Find Full Text PDF