Efficient transfer of S and chalcophile metals through the Earth's crust in arc systems is paramount for the formation of large magmatic-hydrothermal ore deposits. The formation of sulfide-volatile compound drops has been recognized as a potential key mechanism for such transfer but their fate during dynamic arc magmatism remains cryptic. Combining elemental mapping and in-situ mineral analyzes we reconstruct the evolution of compound drops in the active Christiana-Santorini-Kolumbo volcanic field.
View Article and Find Full Text PDFPlant responses to salt exposure involve large reconfigurations of hormonal pathways that orchestrate physiological changes towards tolerance. Jasmonate (JA) hormones are essential to withstand biotic and abiotic assaults, but their roles in salt tolerance remain unclear. Here we describe the dynamics of JA metabolism and signaling in root and leaf tissue of rice, a plant species that is highly exposed and sensitive to salt.
View Article and Find Full Text PDFSalinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh.
View Article and Find Full Text PDFSalinity poses a serious threat to global agriculture and human food security. A better understanding of plant adaptation to salt stress is, therefore, mandatory. In the non-photosynthetic cells of the root, salinity perturbs oxidative balance in mitochondria, leading to cell death.
View Article and Find Full Text PDFPhosphorus (P) is an essential macronutrient, playing a role in developmental and metabolic processes in plants. To understand the local and systemic responses of sorghum to inorganic phosphorus (P) starvation and the potential of straw and ash for reutilisation in agriculture, we compared two grain (Razinieh) and sweet (Della) sorghum varieties with respect to their morpho-physiological and molecular responses. We found that P starvation increased the elongation of primary roots, the formation of lateral roots, and the accumulation of anthocyanin.
View Article and Find Full Text PDF