Food web research provides essential insights into ecosystem functioning, but practical applications in ecosystem-based management are hampered by a current lack of knowledge synthesis. To address this gap, we provide the first systematic review of ecological studies applying stable isotope analysis, a pivotal method in food web research, in the heavily anthropogenically impacted Baltic Sea macro-region. We identified a thriving research field, with 164 publications advancing a broad range of fundamental and applied research topics, but also found structural shortcomings limiting ecosystem-level understanding.
View Article and Find Full Text PDFIncreasing sea surface temperatures (SST) and blooms of lipid-poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build-up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate and boreal spp.
View Article and Find Full Text PDFChanges in the complexity of planktonic food webs may be expected in future aquatic systems due to increases in sea surface temperature and an enhanced stratification of the water column. Under these conditions, the growth of unpalatable, filamentous, N -fixing cyanobacterial blooms, and their effect on planktonic food webs will become increasingly important. The planktonic food web structure in aquatic ecosystems at times of filamentous cyanobacterial blooms is currently unresolved, with discordant lines of evidence suggesting that herbivores dominate the mesozooplankton or that mesozooplankton organisms are mainly carnivorous.
View Article and Find Full Text PDFHLA-NET (a European COST Action) aims at networking researchers working in bone marrow transplantation, epidemiology and population genetics to improve the molecular characterization of the HLA genetic diversity of human populations, with an expected strong impact on both public health and fundamental research. Such improvements involve finding consensual strategies to characterize human populations and samples and report HLA molecular typings and ambiguities; proposing user-friendly access to databases and computer tools and defining minimal requirements related to ethical aspects. The overall outcome is the provision of population genetic characterizations and comparisons in a standard way by all interested laboratories.
View Article and Find Full Text PDF