Publications by authors named "E Efstathiadis"

Objectives: To assess the effect of image registration and averaging on the visualization and quantification of the radial peripapillary capillary (RPC) network on optical coherence tomography angiography (OCTA).

Methods: Twenty-two healthy controls were imaged with a commercial OCTA system (AngioVue, Optovue, Inc.).

View Article and Find Full Text PDF

Purpose: To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes.

Methods: Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest.

View Article and Find Full Text PDF

Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only vaccine currently used against tuberculosis, is an attenuated derivative of M. bovis that has been propagated in vitro for more than 40 years. We have previously reported that the experimentally-verified human T cell epitopes of the M.

View Article and Find Full Text PDF

The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown.

View Article and Find Full Text PDF

Defining the architecture of a specific cancer genome, including its structural variants, is essential for understanding tumor biology, mechanisms of oncogenesis, and for designing effective personalized therapies. Short read paired-end sequencing is currently the most sensitive method for detecting somatic mutations that arise during tumor development. However, mapping structural variants using this method leads to a large number of false positive calls, mostly due to the repetitive nature of the genome and the difficulty of assigning correct mapping positions to short reads.

View Article and Find Full Text PDF