Here, we present the first evidence for brain adaptation in pigs tolerant to the human presence, as a behavioral trait favoring domestication. The study was carried out on minipiglets from population bred at the Institute of Cytology and Genetics (Novosibirsk, Russia). We compared the behavior, metabolism of monoaminergic neurotransmitter systems, and functional activity of the hypothalamic-pituitary-adrenal system, as well as neurotrophic markers in the brain of minipigs differing by tolerance to human presence (HT and LT - high and low tolerance).
View Article and Find Full Text PDFBackground: Multiple antigenic stimulations are crucial to immune system training during early post-natal life. These stimulations can be either due to commensals, which accounts for the acquisition and maintenance of tolerance, or to pathogens, which triggers immunity. In pig, only few works previously explored the influence of natural exposition to pathogens upon immune competence.
View Article and Find Full Text PDFStriatal-enriched protein tyrosine phosphatase (STEP) is a signal transduction protein involved in the pathogenesis of neuropathologies. A STEP inhibitor (TC-2153) has antipsychotic and antidepressant effects. Here, we evaluated the role of STEP in fear-induced aggression using Norway rats selectively bred for 90 generations for either high aggression toward humans (aggressive rats) or its absence (tame rats).
View Article and Find Full Text PDFIndividual differences in physiological and biobehavioral adaptation to chronic stress are important predictors of health and fitness; genetic differences play an important role in this adaptation. To identify these differences we measured the biometric, neuroendocrine, and transcriptional response to stress among inbred mouse strains with varying degrees of genetic similarity, C57BL/6J (B), C57BL/6NJ (N), and DBA/2J (D). The B and D strains are highly genetically diverse whereas the B and N substrains are highly similar.
View Article and Find Full Text PDFBackground: The effect of stress on alcohol consumption in humans is highly variable, and the underlying processes are not yet understood. Attempts to model a positive relationship between stress and increased ethanol (EtOH) consumption in animals have been only modestly successful. Our hypothesis is that individual differences in stress effects on EtOH consumption are mediated by genetics.
View Article and Find Full Text PDF