Publications by authors named "E E Strekalova"

Purpose: Tumor cells are dependent on the glutathione and thioredoxin antioxidant pathways to survive oxidative stress. Since the essential amino acid methionine is converted to glutathione, we hypothesized that methionine restriction (MR) would deplete glutathione and render tumors dependent on the thioredoxin pathway and its rate-limiting enzyme thioredoxin reductase (TXNRD).

Methods: Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control or MR media and the effects on reactive oxygen species (ROS) and antioxidant signaling were examined.

View Article and Find Full Text PDF

Purpose: Transformed cells are vulnerable to depletion of certain amino acids. Lysine oxidase (LO) catalyzes the oxidative deamination of lysine, resulting in lysine depletion and hydrogen peroxide production. Although LO has broad antitumor activity in preclinical models, the cytotoxic mechanisms of LO are poorly understood.

View Article and Find Full Text PDF

We have developed a novel therapeutic paradigm ("metabolic priming") for cancer whereby restriction of the essential amino acid methionine activates a number of cell-stress-response pathways that can be selectively targeted to enhance the therapeutic impact of methionine restriction. One example of metabolic priming is the combination of methionine restriction with proapoptotic TRAIL receptor-2 (TRAIL-R2) agonists. Methionine restriction enhances the cell surface expression of TRAIL-R2 selectively in transformed breast epithelial cells and renders them more susceptible to cell death induction by TRAIL-R2 agonists in cellular and murine models of breast cancer.

View Article and Find Full Text PDF

Purpose: Many transformed cells and embryonic stem cells are dependent on the biosynthesis of the universal methyl-donor S-adenosylmethionine (SAM) from methionine by the enzyme MAT2A to maintain their epigenome. We hypothesized that cancer stem cells (CSCs) rely on SAM biosynthesis and that the combination of methionine depletion and MAT2A inhibition would eradicate CSCs.

Methods: Human triple (ER/PR/HER2)-negative breast carcinoma (TNBC) cell lines were cultured as CSC-enriched mammospheres in control or methionine-free media.

View Article and Find Full Text PDF

Purpose: Despite robust antitumor activity in diverse preclinical models, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have not demonstrated efficacy in clinical trials, underscoring the need to identify agents that enhance their activity. We postulated that the metabolic stress induced by the diabetes drug metformin would sensitize breast cancer cells to TRAIL receptor agonists.

Methods: Human triple (estrogen receptor, progesterone receptor, and HER2)-negative breast cancer (TNBC) cell lines were treated with TRAIL receptor agonists (monoclonal antibodies or TRAIL peptide), metformin, or the combination.

View Article and Find Full Text PDF